Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3129, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605050

RESUMO

The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.


Assuntos
Isomerases de Dissulfetos de Proteínas , Trombose , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/genética , Dissulfetos , Proteínas/metabolismo , Trombose/genética , Trombose/metabolismo , Heparitina Sulfato , Fator XII/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205640

RESUMO

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismo
3.
J Am Chem Soc ; 145(5): 3196-3203, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696679

RESUMO

Extracellular protein disulfide isomerase (PDI) is a promising target for thrombotic-related diseases. Four potent PDI inhibitors with unprecedented chemical architectures, piericones A-D (1-4), were isolated from Pieris japonica. Their structures were elucidated by spectroscopic data analysis, chemical methods, quantum 13C nuclear magnetic resonance DP4+ and electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Piericones A (1) and B (2) were nanomolar noncompetitive PDI inhibitors possessing an unprecedented 3,6,10,15-tetraoxatetracyclo[7.6.0.04,9.01,12]pentadecane motif with nine contiguous stereogenic centers. Their biosynthetic pathways were proposed to include a key intermolecular aldol reaction and an intramolecular 1,2-migration reaction. Piericone A (1) significantly inhibited in vitro platelet aggregation and fibrin formation and in vivo thrombus formation via the inhibition of extracellular PDI without increasing the bleeding risk. The molecular docking and dynamics simulation of 1 and 2 provided a novel structure basis to develop PDI inhibitors as potent antithrombotics.


Assuntos
Isomerases de Dissulfetos de Proteínas , Trombose , Humanos , Isomerases de Dissulfetos de Proteínas/química , Plaquetas/metabolismo , Fibrinolíticos/metabolismo , Simulação de Acoplamento Molecular , Trombose/metabolismo
4.
Br J Pharmacol ; 180(3): 287-307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36166754

RESUMO

BACKGROUND AND PURPOSE: Thrombosis is a major cause of morbidity and mortality worldwide. Platelet activation by exposed collagen through glycoprotein VI (GPVI) and formation of neutrophil extracellular traps (NETs) are critical pathogenic factors for arterial and venous thrombosis. Both events are regulated by spleen tyrosine kinase (Syk)-mediated signalling events. Asebogenin is a dihydrochalcone whose pharmacological effects remain largely unknown. This study aims to investigate the antithrombotic effects of asebogenin and the underlying molecular mechanisms. EXPERIMENTAL APPROACH: Platelet aggregation was assessed using an aggregometer. Platelet P-selectin exposure, integrin activation and calcium mobilization were determined by flow cytometry. NETs formation was assessed by SYTOX Green staining and immunohistochemistry. Quantitative phosphoproteomics, microscale thermophoresis, in vitro kinase assay and molecular docking combined with dynamics simulation were performed to characterize the targets of asebogenin. The in vivo effects of asebogenin on arterial thrombosis were investigated using FeCl3 -induced and laser-induced injury models, whereas those of venous thrombosis were induced by stenosis of the inferior vena cava. KEY RESULTS: Asebogenin inhibited a series of GPVI-induced platelet responses and suppressed NETs formation induced by proinflammatory stimuli. Mechanistically, asebogenin directly interfered with the phosphorylation of Syk at Tyr525/526, which is important for its activation. Further, asebogenin suppressed arterial thrombosis demonstrated by decreased platelet accumulation and fibrin generation and attenuated venous thrombosis determined by reduced neutrophil accumulation and NETs formation, without increasing bleeding risk. CONCLUSION AND IMPLICATIONS: Asebogenin exhibits potent antithrombotic effects by targeting Syk and is a potential lead compound for the development of efficient and safe antithrombotic agents.


Assuntos
Fibrinolíticos , Trombose , Humanos , Fosforilação , Fibrinolíticos/farmacologia , Simulação de Acoplamento Molecular , Agregação Plaquetária , Ativação Plaquetária , Plaquetas , Trombose/tratamento farmacológico , Trombose/metabolismo , Quinase Syk/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo
6.
Br J Pharmacol ; 178(15): 2911-2930, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33837960

RESUMO

Protein disulfide isomerase (PDI) is the prototypic member of the thiol isomerase family that catalyses disulfide bond rearrangement. Initially identified in the endoplasmic reticulum as folding catalysts, PDI and other members in its family have also been widely reported to reside on the cell surface and in the extracellular matrix. Although how PDI is exported and retained on the cell surface remains a subject of debate, this unique pool of PDI is developing into an important mechanism underlying the redox regulation of protein sulfhydryls that are critical for the cellular activities under various disease conditions. This review aims to provide an overview of the pathophysiological roles of surface and extracellular PDI and their underlying molecular mechanisms. Understanding the involvement of extracellular PDI in these diseases will advance our knowledge in the molecular aetiology to facilitate the development of novel pharmacological strategies by specifically targeting PDI in extracellular compartments.


Assuntos
Retículo Endoplasmático , Isomerases de Dissulfetos de Proteínas , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas/metabolismo
7.
Pharmacol Res ; 167: 105540, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711433

RESUMO

Classical antithrombotics and antiplatelets are associated with high frequencies of bleeding complications or treatment failure when used as single agents. The platelet-independent fibrin generation by activated endothelium highlights the importance of vascular protection in addition to platelet inhibition in thrombosis prevention. Dihydromyricetin (DHM), the most abundant flavonoid in Ampelopsis grossedentata, has unique vasoprotective effects. This study aims to characterize the antithrombotic potential of DHM. The effects of DHM on the activation of platelets and endothelial cells were evaluated in vitro. Calcium mobilization and activation of mitogen-activated protein kinases (MAPKs) were examined as the potential targets of DHM based on molecular docking analysis. The in vivo effects of DHM were determined in FeCl3-injured carotid arteries and laser-injured cremasteric arterioles. The results showed that DHM suppressed a range of platelet responses including aggregation, secretion, adhesion, spreading and integrin activation, and inhibited exocytosis, phosphatidylserine exposure and tissue factor expression in activated endothelial cells. Mechanistically, DHM attenuated thrombin-induced calcium mobilization and phosphorylation of ERK1/2 and p38 both in platelets and endothelial cells. Intravenous treatment with DHM delayed FeCl3-induced carotid arterial thrombosis. Furthermore, DHM treatment inhibited both platelet accumulation and fibrin generation in the presence or absence of eptifibatide in the laser injury-induced thrombosis model, without prolonging ex vivo plasma coagulation or tail bleeding time. DHM represents a novel antithrombotic agent whose effects involve both inhibition of platelet activation and reduction of fibrin generation as a result of endothelial protection.


Assuntos
Células Endoteliais/efeitos dos fármacos , Fibrinolíticos/farmacologia , Flavonóis/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Trombose/tratamento farmacológico , Animais , Células Endoteliais/patologia , Feminino , Fibrinolíticos/uso terapêutico , Flavonóis/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Inibidores da Agregação Plaquetária/uso terapêutico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Trombose/patologia
8.
J Neuroinflammation ; 14(1): 234, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197398

RESUMO

BACKGROUND: It has been shown that chronic stress-induced depression is associated with exaggerated inflammatory response in the brain. Alpha7 nicotinic acetylcholine receptors (α7nAChRs) regulate the cholinergic anti-inflammatory pathway, but the role of cholinergic signaling and α7nAChR in chronic stress has not yet been examined. METHODS: In this study, we used a well-documented model of depression in which mice were exposed to 6 h of restraint stress for 21 consecutive days. Components of cholinergic signaling and TLR4 signaling were analyzed in the hippocampus. The main targets of neuroinflammation and neuronal damage were also evaluated after a series of tests for depression-like behavior. RESULTS: Chronic restraint stress (CRS) induced alterations in components of central cholinergic signaling in hippocampus, including increases in choline acetyltransferase protein expression and decreases in nuclear STAT3 signaling. CRS also increased TLR4 signaling activity, interleukin-1ß, and tumor necrosis factor-α expression, microglial activation, and neuronal morphologic changes. Cholinergic stimulation with the α7nAChR agonist DMXBA significantly alleviated CRS-induced depressive-like behavior, neuroinflammation, and neuronal damage, but these effects were abolished by the selective α7nAChR antagonist α-bungarotoxin. Furthermore, activation of α7nAChRs restored the central cholinergic signaling function, inhibited TLR4-mediated inflammatory signaling and microglial activity, and increased the number of regulatory T cells in the hippocampus. CONCLUSIONS: These findings provide evidence that α7nAChR activation mitigates CRS-induced neuroinflammation and cell death, suggesting that α7nAChRs could be a new therapeutic target for the prevention and treatment of depression.


Assuntos
Depressão/etiologia , Hipocampo/metabolismo , Estresse Psicológico/complicações , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Depressão/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Restrição Física
9.
Neuropharmacology ; 110(Pt A): 308-321, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515806

RESUMO

Anxiety is an affective disorder that is commonly observed after irreversible brain damage induced by cerebral ischemia and can delay the physical and cognitive recovery, which affects the quality of life of both the patient and family members. However, anxiety after ischemia has received less attention, and mechanisms underlying anxiety-like behaviours induced by chronic cerebral ischemia are under-investigated. In the present study, the chronic cerebral hypoperfusion model was established by the permanent occlusion of the bilateral common carotid arteries (two-vessel occlusion, 2VO) in rats, and anxiety-related behaviours were evaluated. Results indicated that 2VO induced obvious anxiety-like behaviours; the surface expressions of GABAB2 subunits were down-regulated; Brain derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and neural cell adhesion molecule (NCAM) were reduced; Meanwhile, the surface expressions of G protein-activated inwardly rectifying potassium (GIRK, Kir3) channels were up-regulated in hippocampal CA1 in 2VO rats. Baclofen, a GABAB receptor agonist, significantly ameliorated the anxiety-like behaviours. It also improved the down-regulation of GABAB2 surface expressions, restored the levels of BDNF, TrkB and NCAM, and reversed the increased surface expressions of Kir3 in hippocampal CA1 in 2VO rats. However, the effects of baclofen were absent in shRNA-GABAB2 infected 2VO rats. These results suggested that activation of GABAB2 subunits could improve BDNF signalling and reverse Kir3 channel surface expressions in hippocampal CA1, which may alleviate the anxiety-like behaviours in rats with chronic cerebral hypoperfusion.


Assuntos
Ansiedade/metabolismo , Doenças das Artérias Carótidas/metabolismo , Receptores de GABA-B/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Baclofeno/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Doenças das Artérias Carótidas/tratamento farmacológico , Doenças das Artérias Carótidas/psicologia , Artéria Carótida Primitiva , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Psicotrópicos/farmacologia , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Receptores de GABA-B/genética , Proteína da Zônula de Oclusão-2/metabolismo
10.
Neural Regen Res ; 11(5): 779-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27335562

RESUMO

The selective hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288) blocks the induction of long-term potentiation in the perforant path-CA3 region in rat hippocampus in vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perforant path-CA3 synapses in male Sprague-Dawley rats. We measured glutamate content in the hippocampus and in cultured hippocampal neurons using high performance liquid chromatography, and determined intracellular Ca(2+) concentration [Ca(2+)]i) using Fura-2. ZD7288 inhibited the induction and maintenance of long-term potentiation, and these effects were mirrored by the nonspecific HCN channel blocker cesium. ZD7288 also decreased glutamate release in hippocampal tissue and in cultured hippocampal neurons. Furthermore, ZD7288 attenuated glutamate-induced rises in [Ca(2+)]i in a concentration-dependent manner and reversed 8-Br-cAMP-mediated facilitation of these glutamate-induced [Ca(2+)]i rises. Our results suggest that ZD7288 inhibits hippocampal synaptic plasticity both glutamate release and resultant [Ca(2+)]i increases in rat hippocampal neurons.

11.
Behav Brain Res ; 308: 6-13, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27085590

RESUMO

Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH.


Assuntos
Baclofeno/uso terapêutico , Agonistas dos Receptores de GABA-B/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Transtornos da Memória/tratamento farmacológico , Memória de Curto Prazo/efeitos dos fármacos , Canais de Potássio/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Artérias Carótidas/patologia , Estenose das Carótidas/complicações , Modelos Animais de Doenças , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Transtornos da Memória/etiologia , Parvalbuminas/metabolismo , Canais de Potássio/genética , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
12.
Pharmacol Biochem Behav ; 140: 1-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26549214

RESUMO

Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/fisiopatologia , Fluoxetina/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Canais de Potássio/biossíntese , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Animais , Região CA1 Hipocampal/irrigação sanguínea , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Canais de Potássio/genética , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Sinapses/efeitos dos fármacos
13.
CNS Neurosci Ther ; 21(11): 905-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26494128

RESUMO

AIMS: Brain ischemia activates astrocytes in a process known as astrogliosis. Although this process has beneficial effects, excessive astrogliosis can impair neuronal recovery. Polyinosinic-polycytidylic acid (Poly IC) has shown neuroprotection against cerebral ischemia-reperfusion injury, but whether it regulates reactive astrogliosis and glial scar formation is not clear. METHODS: We exposed cultured astrocytes to oxygen-glucose deprivation/reoxygenation (OGD/R) and used a rat middle cerebral artery occlusion (MCAO)/reperfusion model to investigate the effects of Poly IC. Astrocyte proliferation and proliferation-related molecules were evaluated by immunostaining and Western blotting. Neurological deficit scores, infarct volumes and neuroplasticity were evaluated in rats after transient MCAO. RESULTS: In vitro, Poly IC inhibited astrocyte proliferation, upregulated Toll-like receptor 3 (TLR3) expression, upregulated interferon-ß, and downregulated interleukin-6 production. These changes were blocked by a neutralizing antibody against TLR3, suggesting that Poly IC function is TLR3-dependent. Moreover, in the MCAO model, Poly IC attenuated reactive astrogliosis, reduced brain infarction volume, and improved neurological function. In addition, Poly IC prevented MCAO-induced reductions in soma size, dendrite length, and number of dendritic bifurcations in cortical neurons of the infarct penumbra. CONCLUSIONS: By ameliorating astrogliosis-related damage, Poly IC is a potential therapeutic agent for attenuating neuronal damage and promoting recovery after brain ischemia.


Assuntos
Gliose/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Indutores de Interferon/uso terapêutico , Poli I-C/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Glucose/deficiência , Hipóxia/tratamento farmacológico , Indutores de Interferon/farmacologia , Masculino , Poli I-C/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Regulação para Cima/efeitos dos fármacos
14.
Neurobiol Learn Mem ; 123: 72-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26021557

RESUMO

Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression.


Assuntos
Região CA1 Hipocampal/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Canais de Potássio/fisiologia , Memória Espacial/fisiologia , Animais , Isquemia Encefálica/etiologia , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Behav Brain Res ; 288: 1-10, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25869780

RESUMO

Chronic restraint stress (CRS) causes hippocampal neurodegeneration and hippocampus-dependent cognitive deficits. Flupirtine represents neuroprotective effects and we have previously shown that flupirtine can protect against memory impairment induced by acute stress. The present study aimed to investigate whether flupirtine could alleviate spatial learning and memory impairment and hippocampal apoptosis induced by CRS. CRS mice were restrained in well-ventilated Plexiglass tubes for 6h daily beginning from 10:00 to 16:00 for 21 consecutive days. Mice were injected with flupirtine (10mg/kg and 25mg/kg) or vehicle (10% DMSO) 30min before restraint stress for 21 days. After stressor cessation, the spatial learning and memory, dendritic spine density, injured neurons and the levels of Bcl-2, Bax, p-Akt, p-GSK-3ß, p-Erk1/2 and synaptophysin of hippocampal tissues were examined. Our results showed that flupirtine significantly prevented spatial learning and memory impairment induced by CRS in the Morris water maze. In addition, flupirtine (10mg/kg and 25mg/kg) treatment alleviated neuronal apoptosis and the reduction of dendritic spine density and synaptophysin expression in the hippocampal CA1 region of CRS mice. Furthermore, flupirtine (10mg/kg and 25mg/kg) treatment significantly decreased the expression of Bax and increased the p-Akt and p-GSK-3ß, and flupirtine (25mg/kg) treatment up-regulated the p-Erk1/2 in the hippocampus of CRS mice. These results suggested that flupirtine exerted protective effects on the CRS-induced cognitive impairment and hippocampal neuronal apoptosis, which is possibly associated with the activation of Akt/GSK-3ß and Erk1/2 signaling pathways.


Assuntos
Aminopiridinas/farmacologia , Apoptose/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Apoptose/fisiologia , Doença Crônica , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Modelos Animais de Doenças , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Nootrópicos/farmacologia , Distribuição Aleatória , Restrição Física , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Estresse Psicológico/complicações , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia
16.
Neuropharmacology ; 95: 154-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25796298

RESUMO

M-type (Kv7) K(+) channels, encoded by KCNQ2-KCNQ5 genes, play a pivotal role in controlling neuronal excitability. However, precisely how neuronal activity regulates Kv7 channel translocation has not yet been fully defined. Here we reported activity-dependent changes in Kv7 channel subunits Kv7.2 and Kv7.3 surface expression by glutamate (glu). In the present study, we found that treatment with glutamate rapidly caused a specific decrease in M-current as well as Kv7 channel surface expression in primary cultured hippocampal neurons. The glutamate effects were mimicked by NMDA and AMPA. The glutamate effects on Kv7 channels were partially attenuated by pre-treatment of NMDA receptors antagonist d,l-APV or AMPA-KA receptors antagonist CNQX. The signal required Ca(2+) influx through L-type Ca(2+) channel and intracellular Ca(2+) elevations. PKC activation was involved in the glutamate-induced reduction of Kv7 channel surface expression. Moreover, a significant reduction of Kv7 channel surface expression occurred following glycine-induced "chem"-LTP in vitro and hippocampus-dependent behavioral learning training in vivo. These results demonstrated that activity-dependent reduction of Kv7 channel surface expression through activation of ionotropic glutamate receptors (iGluRs)/Ca(2+)/PKC signaling pathway might be an important molecular mechanism for regulation of neuronal excitability and synaptic plasticity.


Assuntos
Cálcio/metabolismo , Hipocampo/fisiologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Proteína Quinase C/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Cátions/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Células Cultivadas , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , N-Metilaspartato/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos Sprague-Dawley , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
17.
Pharmacol Biochem Behav ; 132: 96-102, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25641668

RESUMO

Chronic cerebral hypoperfusion may cause cognitive impairment, but the underlying neurobiological mechanism is poorly understood. In this study, we investigated whether clonidine, an α2-adrenergic receptor agonist, could play neuroprotective role against chronic ischemic brain injury and the potential mechanism. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Three weeks later, rats were administrated with 0.05mg/kg clonidine (intraperitoneal injection, i.p.) for 7days. Cognitive function was evaluated by Morris water maze (MWM). Immunofluorescence and western blots were used to detect the protein levels. Our results showed that the cognitive function was partially impaired, and the expression of neuronal nuclei (NeuN), glutamic acid decarboxylase 67 (GAD67) and γ-aminobutyric acid-B receptor 1 (GABABR1) in hippocampal CA1 area was attenuated after 2VO, which were not observed in CA3 and dentate gyrus (DG). Administration of 0.05mg/kg clonidine (i.p.) for 7days could improve cognitive function and the expression of NeuN, GAD67 and GABABR1 in CA1, but did not affect the protein levels in CA3 and DG. These findings demonstrated that clonidine could ameliorate cognitive deficits and neuronal impairment induced by chronic cerebral hypoperfusion via up-regulation of GABABR1 and GAD67 in hippocampal CA1.

18.
Artigo em Inglês | MEDLINE | ID: mdl-25301101

RESUMO

The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a vital role in the neurological basis underlying nervous system diseases. However, the role of HCN channels in drug addiction is not fully understood. In the present study, we investigated the expression of HCN1 and HCN2 subunits in hippocampal CA1 and the potential molecular mechanisms underlying the modulation of HCN channels in rats with chronic morphine exposure with approaches of electrophysiology, water maze, and Western blotting. We found that chronic morphine exposure (5 mg/kg, sc, for 7 days) caused an inhibition of long-term potentiation (LTP) and impairment of spatial learning and memory, which is associated with a decrease in HCN1, and an increase in HCN2 on cell membrane of hippocampal CA1 area. Additional experiments showed that the imbalance of cell membrane HCN1 and HCN2 expression under chronic morphine exposure was related to an increase in expression of TPR containing Rab8b interacting protein (TRIP8b) (1a-4) and TRIP8b (1b-2), and phosphorylation of protein kinase A (PKA) and adaptor protein 2 µ2 (AP2 µ2). Our results demonstrate the novel information that drug addiction-induced impairment of learning and memory is involved in the imbalance of HCN1 and HCN2 subunits, which is mediated by activation of TRIP8b (1a-4), TRIP8b (1b-2), PKA and AP2 µ2.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Transtornos da Memória/induzido quimicamente , Morfina/toxicidade , Entorpecentes/toxicidade , Aprendizagem Espacial/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Transtornos da Memória/patologia , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley
19.
PLoS One ; 9(6): e99526, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914679

RESUMO

BACKGROUND: Cerebral ischemic preconditioning (IPC) protects brain against ischemic injury. Activation of Toll-like receptor 3 (TLR3) signaling can induce neuroprotective mediators, but whether astrocytic TLR3 signaling is involved in IPC-induced ischemic tolerance is not known. METHODS: IPC was modeled in mice with three brief episodes of bilateral carotid occlusion. In vitro, IPC was modeled in astrocytes by 1-h oxygen-glucose deprivation (OGD). Injury and components of the TLR3 signaling pathway were measured after a subsequent protracted ischemic event. A neutralizing antibody against TLR3 was used to evaluate the role of TLR3 signaling in ischemic tolerance. RESULTS: IPC in vivo reduced brain damage from permanent middle cerebral artery occlusion in mice and increased expression of TLR3 in cortical astrocytes. IPC also reduced damage in isolated astrocytes after 12-h OGD. In astrocytes, IPC or 12-h OGD alone increased TLR3 expression, and 12-h OGD alone increased expression of phosphorylated NFκB (pNFκB). However, IPC or 12-h OGD alone did not alter the expression of Toll/interleukin receptor domain-containing adaptor-inducing IFNß (TRIF) or phosphorylated interferon regulatory factor 3 (pIRF3). Exposure to IPC before OGD increased TRIF and pIRF3 expression but decreased pNFκB expression. Analysis of cytokines showed that 12-h OGD alone increased IFNß and IL-6 secretion; 12-h OGD preceded by IPC further increased IFNß secretion but decreased IL-6 secretion. Preconditioning with TLR3 ligand Poly I:C increased pIRF3 expression and protected astrocytes against ischemic injury; however, cells treated with a neutralizing antibody against TLR3 lacked the IPC- and Poly I:C-induced ischemic protection and augmentation of IFNß. CONCLUSIONS: The results suggest that IPC-induced ischemic tolerance is mediated by astrocytic TLR3 signaling. This reprogramming of TLR3 signaling by IPC in astrocytes may play an important role in suppression of the post-ischemic inflammatory response and thereby protect against ischemic damage. The mechanism may be via activation of the TLR3/TRIF/IRF3 signaling pathway.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Precondicionamento Isquêmico , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Astrócitos/patologia , Encéfalo/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Infarto da Artéria Cerebral Média/patologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Oxigênio , Fosforilação , Poli I-C/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
20.
Mol Neurobiol ; 50(2): 704-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24838625

RESUMO

Hyperpolarization-activated cyclic-nucleotide-gated cation nonselective (HCN) channels are involved in the pathology of nervous system diseases. HCN channels and γ-aminobutyric acid (GABA) receptors can mutually co-regulate the function of neurons in many brain areas. However, little is known about the co-regulation of HCN channels and GABA receptors in the chronic ischemic rats with possible features of vascular dementia. Protein kinase A (PKA) and TPR containing Rab8b interacting protein (TRIP8b) can modulate GABAB receptors cell surface stability and HCN channel trafficking, respectively, and adaptor-associated kinase 1 (AAK1) inhibits the function of the major TRIP8b-interacting protein adaptor protein 2 (AP2) via phosphorylating the AP2 µ2 subunit. Until now, the role of these regulatory factors in chronic cerebral hypoperfusion is unclear. In the present study, we evaluated whether and how HCN channels and GABAB receptors were pathologically altered and investigated neuroprotective effects of GABAB receptors activation and cross-talk networks between GABAB receptors and HCN channels in the hippocampal CA1 area in chronic cerebral hypoperfusion rat model. We found that cerebral hypoperfusion for 5 weeks by permanent occlusion of bilateral common carotid arteries (two-vessel occlusion, 2VO) induced marked spatial and nonspatial learning and memory deficits, significant neuronal loss and decrease in dendritic spine density, impairment of long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses, and reduction of surface expression of GABAB R1, GABAB R2, and HCN1, but increase in HCN2 surface expression. Meanwhile, the protein expression of TRIP8b (1a-4), TRIP8b (1b-2), and AAK1 was significantly decreased. Baclofen, a GABAB receptor agonist, markedly improved the memory impairment and alleviated neuronal damage. Besides, baclofen attenuated the decrease of surface expression of GABAB R1, GABAB R2, and HCN1, but downregulated HCN2 surface expression. Furthermore, baclofen could restore expression of AAK1 protein and significantly increase p-PKA, TRIP8b (1a-4), TRIP8b (1b-2), and p-AP2 µ2 expression. Those findings suggested that, under chronic cerebral hypoperfusion, activation of PKA could attenuate baclofen-induced decrease in surface expression of GABAB R1 and GABAB R2, and activation of GABAB receptors not only increased the expression of TRIP8b (1a-4) and TRIP8b (1b-2) but also regulated the function of TRIP8b via AAK1 and p-AP2 µ2, which restored the balance of HCN1/HCN2 surface expression in rat hippocampal CA1 area, and thus ameliorated cognitive impairment.


Assuntos
Região CA1 Hipocampal/metabolismo , Transtornos Cognitivos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Receptores de GABA-B/metabolismo , Animais , Potenciação de Longa Duração , Masculino , Neurônios/metabolismo , Transporte Proteico/fisiologia , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...